Use of silica-encapsulated Pseudomonas sp. strain NCIB 9816-4 in biodegradation of novel hydrocarbon ring structures found in hydraulic fracturing waters.

نویسندگان

  • Kelly G Aukema
  • Lisa Kasinkas
  • Alptekin Aksan
  • Lawrence P Wackett
چکیده

The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation in Waters from Hydraulic Fracturing: Chemistry, Microbiology, and Engineering

Hydraulic fracturing is a method of oil and gas extraction from shale in which substantial volumes of water return to the surface containing chemicals and microorganisms. This paper begins to address the microbial composition and aqueous chemistry and the potential for intrinsic and enhanced bioremediation of these waters. The waters from a gas and oil shale in the Marcellus and Bakken regions,...

متن کامل

Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816.

One of the three components of the naphthalene dioxygenase occurring in induced cells of Pseudomonas sp. strain NCIB 9816 has been purified to homogeneity. The protein contained 2 g-atoms each of iron and acid-labile sulfur and had an apparent molecular weight of 13,600. The evidence indicates that it is a ferredoxin-type protein that functions as an intermediate electron transfer protein in na...

متن کامل

Silica ecosystem for synergistic biotransformation

Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bac...

متن کامل

Stereospecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

Naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 adds both atoms of the dioxygen molecule to styrene to form (R)-l-phenyl-1,2-ethanediol. Product formation is tightly coupled to dioxygen consumption and NADH oxidation. NDO oxidizes styrene-d8 at almost the same initial rate as styrene. The results indicate that dioxygen activation by NDO is different from that by cytochrome...

متن کامل

Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.

Two naphthalene-degrading bacteria, Pseudomonas putida G7 and Pseudomonas sp. strain NCIB 9816-4, were chemotactically attracted to naphthalene in drop assays and modified capillary assays. Growth on naphthalene or salicylate induced the chemotactic response. P. putida G7 was also chemotactic to biphenyl; other polyaromatic hydrocarbons that were tested did not appear to be chemoattractants for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 80 16  شماره 

صفحات  -

تاریخ انتشار 2014